ORIGINAL PAPER

Free ions Pr IV (4f²) and Tm IV (4f¹²): intermediate versus LS coupling scheme

D. N. Petrov · B. M. Angelov

Received: 26 January 2013 / Accepted: 6 June 2013 / Published online: 19 June 2013 © Springer Science+Business Media New York 2013

Abstract The intermediate and LS-coupling schemes for the free lanthanide ions Pr^{3+} and Tm^{3+} have been compared by the matrix elements of the tensor operator $U^{(k)}$, k = 2, 4, 6. The necessary eigenvectors and eigenvalues have been computed with the aid of four parameters, F_2 , F_4 , F_6 , and ζ_{4f} , known from free-ion spectra of the same ions. It has been found that both coupling types for each ion lead to close values of $|U^{(k)}|^2$ only for transitions from the ground level to certain lower-lying energy levels within the 4f^N configuration.

Keywords Pr IV · Tm IV · Intermediate · LS · Coupling · $U^{(k)}$ Matrix elements

1 Introduction

The term "free ion" has been often used in studies on trivalent lanthanides (Ln^{3+}) as an initial approximation or template in physical models applied to optical spectra, x-ray photoelectron spectra and magnetic properties of Ln^{3+} in condensed phase. In fact, states of Ln^{3+} ions free from environment have been observed only in the emission spectra by vaporizing lanthanide metals in an electric discharge [1]. Thus, free-ion fourth spectra (in atomic spectroscopy notation) of Pr IV [2,3], Nd IV [4], Er IV [5], Tm IV [6], and Yb IV [7] have been so far obtained. Other Ln IV free-ion spectra (Ln = Ce, Tb, Yb, and Lu), with sufficient number of $4f^{N}$ -energy levels have been reported in a critical compilation earlier [8].

D. N. Petrov (🖂)

Department of Physical Chemistry, Plovdiv University, 24, Tsar Asen Str., 4000 Plovdiv, Bulgaria e-mail: petrov_d_n@abv.bg

The lowest electron configurations of the title free ions are as follows: $Pr^{3+} = [Xe]4f^2$ and $Tm^{3+} = [Xe]4f^{12}$. Both are complementary to the closed subshell $4f^{14}$ and each comprises 13 levels belonging to 7 multiplets: ${}^{3}F$, ${}^{3}P$, ${}^{3}H$, ${}^{2}D$, ${}^{2}G$, ${}^{2}I$, and ${}^{1}S$ [9]. The first of the reports on Pr IV [2] contains matrix elements of electrostatic interaction E^k and constant of spin–orbit interaction $\zeta_4 f$ but does not include the position of the level ${}^{1}S_0$, while the content of the second one [3] is vice versa; 12 energy levels have identical positions in both studies.

The f \leftrightarrow f transition probabilities can be presented either in the LS-coupling scheme that pertains to the non-relativistic Schrödinger equation or by the jj-coupling in the relativistic Dirac equation [10]. If the energy of electrostatic interaction becomes comparable with that of spin–orbit interaction, a transition takes place from LS- to jj-coupling scheme.

The intermediate coupling arises as a partial breakdown of the LS-coupling in the departure from the Landè interval rule: $\varepsilon(J) - \varepsilon(J-1) = \lambda \zeta_{4f} J$ [11]. In intermediate coupling, the actual wave function $|[SL]J\rangle$ is a linear combination of pure LS-functions $|SLJ\rangle$. The deviations from the LS-coupling are characterized by the magnitudes of the non-diagonal elements in the combined matrices of electrostatic and spin–orbit interactions.

As the matrix elements of the tensor operator $U^{(k)}$ are important in the calculation of the crystal-field potential and the transition probabilities of lanthanide (3+) ions, it is worthy to be determined the dependence of their values on the coupling types.

The present study refers to a comparative analysis of $U^{(k)}$ obtained in LS- and intermediate coupling basis of the free ions Pr IV(4f²) and Tm IV(4f¹²). To the best of our knowledge, such an analysis related to free lanthanide ions has not been reported yet.

2 Method

The f-f transitions arising by electric dipole mechanism are calculated according to the model of Judd–Ofelt [12,13]. The initial and the final states of a transition are usually designated as $\langle [SL]J |$ and $[S^{T}L^{T}]J^{T} \rangle$, respectively. The calculated oscillator strengths contain squared matrix elements of the tensor operator $U^{(k)}$. These quantities are determined according to the Wigner–Eckart theorem as a product of 6j-symbols and doubly reduced matrix elements of the corresponding f^N configuration:

$$\left\langle f^{n} \alpha SLJ \left\| U^{(k)} \right\| f^{n} \alpha^{I} S^{I} L^{I} J^{I} \right\rangle = (-1)^{S+L'+J+k} \delta(S, S^{I}) [(2J+1)(2J^{I}+1)]^{1/2} \mathbf{x}$$

$$\times \left\{ \begin{array}{c} J J^{I} k \\ L^{I} L S \end{array} \right\} \left\langle f^{n} \alpha SL \left\| U^{(k)} \right\| f^{n} \alpha^{I} S^{I} L^{I} \right\rangle; \left\{ \begin{array}{c} a \ b \ c \\ d \ e \ f \end{array} \right\}$$
(1)

The 6j-symbol designates transformations between coupling schemes of three angular momenta and α is any quantum number not specifically stated. Eq. (1) applies also to the calculation of matrix elements of the crystal-field potential [9]. The matrix elements of the operator $U^{(k)}$ in this work have been calculated by means of tabulated 6j-symbols [14, 15] and doubly reduced matrix elements for the partially filled

 f^2 that are also valid for the almost filled subshell f^{12} after transpondation. These for f^2 have been evaluated for each pair of multiplets [16]. The conditions for the δ -function and those of the triangle for each of the four triads must be satisfied, respectively:

$$\delta(S, S^{I}) = 1, \text{ for } S = S^{I}, \text{ or } \delta(S, S^{I}) = 0, \text{ for } S \neq S^{I}; (a e f), (c d e), (a b c), \text{ and } (b d f).$$
(2)

3 Results and discussion

3.1 Pr IV

The eigenvectors and eigenvalues of the free ion Pr IV (4f²) in intermediate coupling have been computed with the following set of parameters of electrostatic interaction and constant of spin–orbit interaction (all in cm⁻¹): $F_2 = 322.09$, $F_4 = 51.558$, $F_6 = 5.1407$, and $\zeta_{4f} = 741$. The results are presented in Table 1.

The Slater parameters F_k have been derived from the matrix elements of electrostatic interaction E^k given for Pr IV in [2] by means of conversion formulae [9]. The r.m.s. deviation between the eigenvalues in this study and 12 energy levels in [2] is ± 84.3 cm⁻¹. The resulting wave functions are listed in Table 1.

It is also seen from Tables 2 and 1 that the two coupling schemes lead to close values of $|U^{(k)}|^2$ for the first five transitions located below 7,000 cm⁻¹. For the remaining higher-lying levels, there are differences between the squared matrix elements in the two coupling types except for three $|U^{(4)}|^2$ and one $|U^{(6)}|^2$ values. The magnitudes

$Level^{2S+1}L_J$	Eigenvectors	Eigenvalues $\tilde{\nu}/cm^{-1}$
(³ [H ₄]	$0.987658 \left<^{3} \mathrm{H_{4}}\right + 0.154163 \left<^{1} \mathrm{G_{4}}\right - 0.0276832 \left<^{3} \mathrm{F_{4}}\right $	0
$ [^{3}H_{5}]\rangle$	$1.0000 ^{3}H_{5}\rangle$	2,063.7
$ [^{3}H_{6}]\rangle$	$0.99863 ^{3}H_{6}\rangle - 0.0523232 ^{1}I_{6}\rangle$	4,239.1
$ [^{3}F_{2}]\rangle$	$0.989848 ^{3}F_{2}\rangle + 0.141595 ^{1}D_{2}\rangle - 0.0123077 ^{3}P_{2}\rangle$	5,048.5
$ [^{3}F_{3}]\rangle$	$1.0000 ^{3}F_{3}\rangle$	6,419.4
$ [^{3}F_{4}]\rangle$	$0.835956 ^{3}F_{4}\rangle - 0.538178 ^{1}G_{4}\rangle + 0.107435 ^{3}H_{4}\rangle$	6,988.2
$ [^1G_4]\rangle$	$0.828612 ^1G_4\rangle + 0.548098 ^3F_4\rangle - 0.113975 ^3H_4\rangle$	10,046.8
$ [^{1}D_{2}]\rangle$	$0.951389 ^1D_2\rangle - 0.274586 ^3P_2\rangle - 0.139508 ^3F_2\rangle$	17,686.3
$ [^{1}I_{6}]\rangle$	$0.99863 ^1I_6\rangle - 0.0523232 ^3H_6\rangle$	21,607.8
$ [^{3}P_{0}]\rangle$	$0.996295 ^{3}P_{0}\rangle + 0.0859959 ^{1}S_{0}\rangle$	21,799.6
$ [^{3}P_{1}]\rangle$	$1.0000 ^{3}P_{1}\rangle$	22,391.6
$ [^{3}P_{2}]\rangle$	$0.961484 ^{3}P_{2}\rangle + 0.273515 ^{1}D_{2}\rangle - 0.0271706 ^{3}F_{2}\rangle$	23,579.8
$ [^1S_0]\rangle$	$0.996295 ^1S_0\rangle - 0.0859959 ^3P_0\rangle$	51,759.4

Table 1 Eigenvectors and eigenvalues for wave functions of the free ion Pr IV in intermediate coupling

The wave functions of the ground level are designated as an initial or (bra| state

${}^{\text{Transition}}_{^{3}\text{H}_{4}} \rightarrow$	U ⁽²⁾ ² IM	U ⁽⁴⁾ ² IM	U ⁽⁶⁾ ² IM	U ⁽²⁾ ² LS	U ⁽⁴⁾ ² LS	U ⁽⁶⁾ ² LS
³ H ₅	0.3284	0.6112	1.8288	0.3219	0.6753	1.7515
$^{3}H_{6}$	0.0007	0.0905	0.5230	0.0056	0.0614	0.4683
${}^{3}F_{2}$	1.4857	1.2104	0.3681	1.4966	1.2542	0.4242
$^{3}F_{3}$	0.1976	1.0464	2.0997	0.2095	1.0974	2.1212
$^{3}F_{4}$	0.0434	0.1083	1.2847	0.0082	0.1809	1.2727
$^{1}G_{4}$	0.0080	0.0522	0.1159	0	0	0
${}^{1}D_{2}$	0.0003	0.0161	0.1138	0	0	0
${}^{3}P_{0}$	0	0.5027	0	0	0.4762	0
${}^{3}P_{1}$	0.0006	0.5340	0	0	0.5714	0
${}^{1}I_{6}$	0.0077	0.0561	0.0386	0	0	0
${}^{3}P_{2}$	0.00003	0.0948	0.4309	0	0.1212	0.5260
${}^{1}S_{0}$	0	0.0031	0	0	0	0

Table 2 Squared matrix elements of the tensor operator $U^{(k)}$ in intermediate (IM) and LS coupling schemes of Pr IV

of the non-zero matrix elements in the IM coupling depend on the products of the corresponding eigenvectors and on the doubly reduced matrix elements between pure LS-states.

3.2 Tm IV

The eigenvectors and eigenvalues of the free ion Tm IV $(4f^{12})$ in intermediate coupling have been computed with the following set of parameters of electrostatic interaction and constant of spin–orbit interaction (all in cm⁻¹) : F₂ = 463.431, F₄ = 66.4215, F₆ = 6.9595, and ζ_{4f} = 2640. The results are presented in Table 3. The Slater parameters F_k have been obtained from parameters F^k for Tm IV in [6] by means of the coefficients D_k, k = 2, 4, 6 [17]:

$$F_k = F^k / D_k, D_2 = 225, D_4 = 1089, D_6 = 7361.64.$$
 (3)

Only ten energy levels have been registered in the free-ion spectrum of Tm IV in [6]. The r.m.s. deviation between these experimental values and 10 eigenvalues in this study is $\pm 121.2 \text{ cm}^{-1}$. This value accounts mostly for the low number of compared energy levels.

The dominant components of the eigenfunctions determined from the free-ion spectrum of Tm IV [6] and those computed in this work are compared in Table 4.

The percentages of the leading components in Table 4 for Tm IV from experiment [6] and those obtained in this work in intermediate coupling coincide within $\pm 0.5 \%$ in 6 out of 10 wave functions; the deviations for the remaining vary from 3.3 to -2.8 %.

Level ^{2S+1} L _J	Eigenvectors	Eigenvalues \tilde{v}/cm^{-1}
([³ H ₆]	$-0.9955 \left< {}^{3}\text{H}_{6} \right - 0.0947614 \left< {}^{1}\text{I}_{6} \right $	0
$ [^{3}F_{4}]\rangle$	$0.775846 ^{3}F_{4}\rangle - 0.319846 ^{3}H_{4}\rangle + 0.54384 ^{1}G_{4}\rangle$	5,546.6
$ [^{3}H_{5}]\rangle$	$1.0000 ^{3}H_{5}\rangle$	8,227.78
$ [^{3}H_{4}]\rangle$	$0.746321 ^{3}H_{4}\rangle - 0.359855 ^{1}G_{4}\rangle + 0.559919 ^{3}F_{4}\rangle$	12,539.89
$ [^{3}F_{3}]\rangle$	$1.0000 ^{3}F_{3}\rangle$	14,474.89
$ [^{3}F_{2}]\rangle$	$0.880565 ^{3}F_{2}\rangle + 0.436652 ^{1}D_{2}\rangle + 0.184231 ^{3}]P_{2}\rangle$	15,087.73
$ [^{1}G_{4}]\rangle$	$0.758118 ^{1}G_{4}\rangle - 0.290781 ^{3}F_{4}\rangle + 0.583699 ^{3}H_{4}\rangle$	20,990.58
$ [^{1}D_{2}]\rangle$	$0.673717 ^{1}D_{2}\rangle-0.581693 ^{3}P_{2}\rangle-0.455783 ^{3}F_{2}\rangle$	28,412.38
$ [^{1}I_{6}]\rangle$	$0.9955 ^{1}I_{6} angle - 0.0947614 ^{3}H_{6} angle$	34,274.98
$ [^{3}P_{0}]\rangle$	$-0.972726 ^{3}P_{0}\rangle + 0.231957 ^{1}S_{0}\rangle$	34,740.95
$ [^{3}P_{1}]\rangle$	$1.0000 ^{3}P_{1}\rangle$	36,520.18
$ [^{3}P_{2}]\rangle$	$0.79227 ^{3}P_{2}\rangle + 0.596188 ^{1}D_{2}\rangle - 0.129878 ^{3}F_{2}\rangle$	38,852.78
$ [^{1}S_{0}]\rangle$	$-0.972726 ^{1}S_{0}\rangle-0.231957 ^{3}P_{0}\rangle$	77,052.08

Table 3 Eigenvectors and eigenvalues for wave functions of the free ion Tm IV in intermediate coupling

The wave functions of the ground level are designated as an initial or (bra| state

	0 0	`	,					·		
Eigenfunction	³ <i>H</i> 6	${}^{3}F_{4}$	${}^{3}H_{5}$	${}^{3}H_{4}$	${}^{3}F_{3}$	${}^{3}F_{2}$	${}^{1}G_{4}$	${}^{1}D_{2}$	${}^{1}I_{6}$	${}^{3}P_{2}$
From exp. [6]	99	62	100	59	100	78	57	43	99	60
This work	99.1	60.2	100	55.7	100	77.5	57.5	45.4	99.1	62.8

Table 4 Leading eigenfunctions (in %) in certain free-ion levels of Tm IV $(4f^{12})$

However, in the present study we deal with two more energy levels above the ground level, if compared to [6].

The matrix elements of the tensor operator $U^{(k)}$ are presented in Tables 2 and 5 as squared because they have been used in such a form in their immediate application in the determination of transition intensities. For Pr IV, $|U^{(k)}|^2$ include 17 zeros in the Russell-Saunders coupling but only 5 zeros in the IM coupling. For Tm IV, $|U^{(k)}|^2$ in the LS-coupling contain 16 zeros and 6 zeros in the IM coupling. Each coupling scheme contains 36 matrix elements. There are differences for $|U^{(k)}|^2$ of the transition ${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{H}_{4}$ of Tm IV in both coupling types.

For a given transition, the non-zero matrix elements in the IM coupling versus the corresponding zeros in the LS-coupling are exclusively due to contributions from those terms in the products of wave functions $\langle I^3H_4 \rangle |$ or $\langle I^3H_6 \rangle |$, respectively, and $|[S^IL^I]J^I\rangle$ that satisfy both the condition for the δ -function and the triangular conditions.

In order to express the above results in a condensed and indicative form, $|U^{(k)}|^2$ for all transitions have been treated as coordinates of points $(|U^{(2)}|^2, |U^{(4)}|^2, |U^{(6)}|^2)$. Thus, each transition is effectively presented by one point in a three dimensional space of the matrix elements of the tensor operator $U^{(k)}$. Hence, each coupling scheme

$\overline{\text{Transition }^{3}\text{H}_{6}} \rightarrow$	$ U^{(2)} ^2 IM$	$ U^{(4)} ^2 IM$	$ U^{(6)} ^2 IM$	$ U^{(2)} ^{2}LS$	$ U^{(4)} ^{2}LS$	U ⁽⁶⁾ ² LS
³ F ₄	1.4919	1.9811	0.6992	2.4762	2.6380	2.0606
³ H ₅	0.3221	0.6940	1.9145	0.3250	0.7003	1.9318
$^{3}H_{4}$	0.8336	0.4518	1.8083	0.0056	0.0614	0.4683
³ F ₃	2.1472	0.9489	2.5226	2.1667	0.9575	2.5455
${}^{3}F_{2}$	0	0.2110	0.7303	0	0.0625	0.9091
${}^{1}G_{4}$	0.1370	0.2608	0.0088	0	0	0
${}^{1}D_{2}$	0	0.7026	0.5769	0	0	0
${}^{1}I_{6}$	0.0008	0.0671	0.0321	0	0	0
${}^{3}P_{0}$	0	0.5277	0.2161	0	0.5628	0.2143
${}^{3}P_{1}$	0	1.2549	0.3716	0	1.2662	0.3750
${}^{3}P_{2}$	0	1.0342	0.0155	0	1.6883	0.1705
${}^{1}S_{0}$	0	0.0300	0.0312	0	0	0

Table 5 Squared matrix elements of the tensor operator $U^{(k)}$ in intermediate (IM) and LS coupling schemes of Tm IV

Fig. 1 Curved surfaces formed by the points of the squared matrix elements of the tensor operator $U^{(k)}$ in IM and LS coupling of Pr IV

corresponds to a definite plane including the abovementioned number of $f \leftrightarrow f$ transitions with certain close points of the alternative coupling scheme. This generalization has been visualized in Fig. 1 (the upper plane is formed by points in intermediate coupling for both figures) and Fig. 2.

Fig. 2 Curved surfaces formed by the points of the squared matrix elements of the tensor operator $U^{(k)}$ in IM and LS coupling of Tm IV

4 Conclusions

The squared matrix elements of the tensor operator $U^{(k)}$ for the free ions Pr IV and Tm IV exhibit close values in both LS- and intermediate coupling types only for transitions from the respective ground levels ${}^{3}\text{H}_{4}$ and ${}^{3}\text{H}_{6}$ to the levels below 7,000 cm⁻¹ for Pr IV and below 1,5000 cm⁻¹ for Tm IV. In both cases, the relative proximity of the coupling schemes applies at most to five out of 12 4f-levels located above the ground level. The wave functions in the intermediate basis of the upper-lying levels contain admixtures from other levels, thus resulting in non-zero values of $|U^{(k)}|^{2}$.

Acknowledgments The authors are thankful to Assoc. Prof. V. Delchev from Department of Physical Chemistry, University of Plovdiv, for help in the presentation of the figures.

References

- G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, New York, 1968), pp. 46–101
- 2. J. Sugar, Phys. Rev. Lett. 14, 731-732 (1965)
- 3. H.M. Crosswhite, G.H. Dieke, Wm.J. Carter, J. Chem. Phys. 43, 2047–2054 (1965)
- J.-F. Wyart, A. Meftah, W.-Ü.L. Tchang-Brillet, N. Champion, O. Lamrous, N. Spector, J. Sugar, J. Phys. B: At. Mol. Opt. Phys. 40, 3957 (2007)
- 5. W.J. Carter, Ph.D. Thesis, (The Johns Hopkins University, 1966), p. 60
- 6. A. Meftah, J.-F. Wyart, N. Champion, W.-Ü.L. Tchang-Brillet, Eur. Phys. J. D 44, 35-45 (2007)
- J.-F. Wyart, W.-Ü.L. Tchang-Brillet, N. Spector, P. Palmeri, P. Quinet, E. Biémont, Phys. Scripta 63, 113–122 (2001)
- W.C. Martin, R. Zalubas, L. Hagan, Atomic Energy Levels—The Rare-Earth Elements (NSRDS—NBS 60, 1978), p. 422
- 9. B.G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965), pp. 15–209

- 10. L. Smentek, B.G. Wybourne, J. Phys. B: At. Mol. Opt. Phys. 33, 3647-3651 (2000)
- 11. K.N.R. Taylor, M.I. Darby, Physics of Rare Earth Solids (Chapman and Hall, London, 1972), p. 12
- 12. B.R. Judd, Phys. Rev. 127, 750–761 (1962)
- 13. G.S. Ofelt, J. Chem. Phys. 37, 511-520 (1962)
- M. Rotenberg, M. Bivins, N. Metropolis, J.K. Wooten Jr, *The 3-j and 6-j Symbols* (MIT Press, Cambridge, 1959), pp. 13–163
- 15. A.P. Jucys, A.A. Bandzaitis, *Theory of Angular Momentum in Quantum Mechanics (in Russian)* (Vilnius, Mokslas, 1977), p. 355
- R.I. Karaziya, Ya.I. Vizbaraite, Z.B. Rudzikas, A.P. Jucys, *Tables for Calculation of Matrix-Element Operators of Atomic Quantities (in Russian)* (Acad. Sci., Moscow, 1972), p. 28
- E.U. Condon, G.H. Shortley, *The Theory of Atomic Spectra* (Cambridge University Press, London, 1977), pp. 178–180